Language Model Adaptation Using Dirichlet Class Language Model Based on Part-of-Speech

نویسندگان

  • Ali Hatami
  • Ahmad Akbari
  • Babak Nasersharif
چکیده

Language modeling has many applications in a large variety of domains. Performance of this model depends on its adaptation to a particular style of data. Accordingly, adaptation methods endeavour to apply syntactic and semantic characteristics of the language for language modeling. The previous adaptation methods such as family of Dirichlet class language model (DCLM) extract class of history words. These methods due to lake of syntactic information are not suitable for high morphology languages such as Farsi. In this paper, we present an idea for using syntactic information such as part-of-speech (POS) in DCLM for combining with one of the language models of n-gram family. In our work, word clustering is based on POS of previous words and history words in DCLM. The performance of language models are evaluated on BijanKhan corpus using a hidden Markov model based ASR system. The results show that use of POS information along with history words and class of history words improves performance of language model, and decreases the perplexity on our corpus. Exploiting POS information along with DCLM, the word error rate of the ASR system decreases by 1.2% compared to DCLM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persian Adaptation of Enhanced Milieu Teaching for Iranian Children With Expressive Language Delay

Objectives: This study aimed at adapting and examining the applicability of the Teach-Model-Coach-Review model of the enhanced milieu teaching (EMT) approach for improving Iranian mothers’ language strategies while interacting with their toddlers with expressive language delay. Methods: In a single-subject multiple-baseline across-behavior study, the mothers of 3 toddlers with expressive langu...

متن کامل

An improved joint model: POS tagging and dependency parsing

Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...

متن کامل

Rapid Unsupervised Topic Adaptation – a Latent Semantic Approach

In open-domain language exploitation applications, a wide variety of topics with swift topic shifts has to be captured. Consequently, it is crucial to rapidly adapt all language components of a spoken language system. This thesis addresses unsupervised topic adaptation in both monolingual and crosslingual settings. For automatic speech recognition we rapidly adapt a language model on a source l...

متن کامل

Design and Implementation of an Intelligent Part of Speech Generator

The aim of this paper is to report on an attempt to design and implement an intelligent system capable of generating the correct part of speech for a given sentence while the sentence is totally new to the system and not stored in any database available to the system. It follows the same steps a normal individual does to provide the correct parts of speech using a natural language processor. It...

متن کامل

Unsupervised language model adaptation based on topic and role information in multiparty meetings

We continue our previous work on the modeling of topic and role information from multiparty meetings using a hierarchical Dirichlet process (HDP), in the context of language model adaptation. In this paper we focus on three problems: 1) an empirical analysis of the HDP as a nonparametric topic model; 2) the mismatch problem of vocabularies of the baseline n-gram model and the HDP; and 3) an aut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014